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Abstract Accurate forecasting of the properties of coronal mass ejections (CMEs) as they approach
Earth is now recognized as an important strategic objective for both NOAA and NASA. The time of arrival
of such events is a key parameter, one that had been anticipated to be relatively straightforward to
constrain. In this study, we analyze forecasts submitted to the Community Coordinated Modeling Center at
NASA’s Goddard Space Flight Center over the last 6 years to answer the following questions: (1) How well
do these models forecast the arrival time of CME-driven shocks? (2) What are the uncertainties associated
with these forecasts? (3) Which model(s) perform best? (4) Have the models become more accurate during
the past 6 years? We analyze all forecasts made by 32 models from 2013 through mid-2018, and additionally
focus on 28 events, all of which were forecasted by six models. We find that the models are generally able to
predict CME-shock arrival times—in an average sense—to within ±10 hr, but with standard deviations
often exceeding 20 hr. The best performers, on the other hand, maintained a mean error (bias) of −1 hr, a
mean absolute error of 13 hr, and a precision (standard deviation) of 15 hr. Finally, there is no evidence that
the forecasts have become more accurate during this interval. We discuss the intrinsic simplifications of the
various models analyzed, the limitations of this investigation, and suggest possible paths to improve these
forecasts in the future.

1. Introduction

Space weather refers to the conditions surrounding and within the Earth’s environment, driven by changes in
solar activity. Although it can broadly encompass a wide range of effects, of primary concern is the interaction
of Coronal Mass Ejections (CMEs) with the Earth’s magnetosphere, ionosphere, atmosphere, and lithosphere.
The strength of this interaction is controlled to a large degree by the speed of the arriving CME, and the
amount of southward pointing magnetic field (Bz) contained within it.

Prediction of Bz has remained a crucial, but exceedingly difficult, task, in spite of great effort being expended
on it (e.g., Riley et al., 2017). However, given that an event has been observed by remote solar observations, a
related, and arguably equally important question to the what will hit Earth? is when will it hit Earth? In principle,
this is a much simpler problem to solve: The complex details of the eruption process and the evolution of the
flux rope within the ejecta as it propagates through an inhomogeneous medium do not need to be solved.
Instead, given a wide range of initial signatures signaling the launch of the ejecta, one needs only to identify
a reasonable speed profile from 30RS to 1 AU—for the part of the CME that propagates along the Sun-Earth
line—to estimate the time of transit of the ejecta and/or its associated shock wave.

Many models have been developed over the years to estimate the time of travel, or arrival time, of the CME. In
some cases, the shock itself is the focus of the prediction, while in other cases, it is the ejecta itself. Zhao and
Dryer (2014) provided a detailed and thorough discussion of the types of models that have been developed
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for, or adapted for, the purpose of forecasting the time of arrival of CMEs and/or their shocks. They categorize
the models as follows: empirical models, expansion speed models, drag-based models (DBM), physics-based
models, and MHD models. These distinctions are relevant to the forecast submissions that we analyze here,
in that each group is represented by at least a handful of models.

In 2013, NASA’s Community Coordinated Modeling Center (CCMC) developed a web-based submission form
for community researchers and operational forecasters to submit their forecast for CME-driven shock arrival
times, and, optionally, other space weather parameters if appropriate. The underlying philosophy was that
once a new CME had been identified at the Sun, the users would submit their forecast in real time (or as
close as possible, since the lead time of the prediction was also tracked). Additionally, the forecasts would be
made available to the community, again in real time, allowing users and the community-at-large to view the
forecasts as they came in. While submitting teams must be registered, the pages were open to anyone to view.
Until now, no rigorous analysis of these forecasts has been made (although a preliminary analysis of a subset
of these results for two specific models was performed by Pope, 2016).

The CME scoreboard is a component of a broader CME Arrival Time and Impact Working Team started in 2017
and facilitated by the CCMC (https://ccmc.gsfc.nasa.gov/assessment/topics/helio-cme-arrival.php). While the
scoreboard focuses primarily on predicting CME-driven shock arrival before it is observed, the working team,
in conjunction with the scientific community, will evaluate how well different models/techniques can pre-
dict arrival times and geomagnetic impacts for a set of ∼100 historical events. Its goals are (1) to evaluate
the current status of CME arrival time and impact prediction; (2) to establish metrics agreed upon by the
community; and (3) to provide a benchmark against which future models and model improvements can
be assessed.

Various quantities can be calculated to estimate the accuracy of CME-shock arrival times. Most simply, the
forecast error for a particular prediction, i, can be defined as

Δti = to
i − tf

i , (1)

where to
i is observed arrival time of the ith CME shock and tf

i is the forecasted arrival time. Although counter
to the more typical definition of anomalies, where the true value is subtracted from the forecasted value, this
definition has the intuitive property that Δt < 0 implies that the CME-driven shock arrived earlier than the
forecast, while Δt > 0 implies that it arrived later.

We define the accuracy (or bias) for a number of forecasts (N) as the mean error:

accuracy =< Δt > = 1
N

N∑
i=1

Δti. (2)

Precision is defined as the standard deviation (SD), which in turn is the square root of the variance:

SD =
√

variance =

√√√√ 1
N

N∑
i=1

|Δti− < Δt > |2. (3)

Finally, the mean absolute error (MAE) is defined by

MAE = 1
N

N∑
i=1

|Δti− < Δt > |. (4)

Although accuracy (mean error) is often reported, since positive and negative errors tend to cancel one
another out, a more meaningful metric for accuracy, we believe, is the MAE (e.g., Morley et al., 2018). How-
ever, the mean error remains important since it conveys information about possible forecast bias, that is, any
tendency for the model to systematically underestimate or overestimate the observed arrival time. Thus, in
this study, we report all three quantities: mean error, MAE, and SD. Additionally, for completeness, we also
calculate: minimum, first quartile, median, third quartile, and maximum values.

The purpose of this study is fourfold. First, to explore the accuracy and precision of the predictions made by 32
teams during the previous 6 years. Second, to identify any trends, such as improvements in accuracy during
this time period. And third, to identify any specific model, or group of models, that appear to perform better
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Table 1
Summary of all Models Available on the Community Coordinated Modeling
Center’s Coronal Mass Ejection Scoreboard Website, Including the Number of
Forecasts Performed by Each Model

Model name Number of forecasts

WSA-ENLIL + Cone (GSFC SWRC) 114

WSA-ENLIL + Cone (NOAA/SWPC) 78

ips.gov.au 3

H3DMHD (HAFv.3+3DMHD) 1

Anemomilos 18

Average of all methods 139

ESA 3

DBM 13

BHV 4

SIDC 101

STOA 8

HAFv2w 1

Ensemble WSA-ENLIL + Cone (GSFC SWRC) 57

WSA-ENLIL + Cone 10

Expansion Speed Prediction Model 4

COMESEP 7

SARM 6

SAO Crowdsource 3

WSA-ENLIL + Cone (Met Office) 70

Rice-ENLIL Dst 1

WSA-ENLIL + Cone (KSWC) 20

ElEvo 3

SPM2 21

WSA-ENLIL + Cone (BoM) 4

SPM 14

DBM + ESWF 3

EAM 8

BGS 2

Ooty IPS 2

NSSC SEPC 3

Other 2

CAT-PUMA 1

Note. Models are ordered by date of first submission. DBM = drag-based
model; EAM = Effective Acceleration Model.

than the rest. Fourth, to provide a basis for evaluating future, novel forecast
submissions by publishing these results, together with the code necessary
to update the study in the future.

2. Methods
2.1. Models
Currently, 32 distinct models (or model variants) have been used to predict
the CME arrival times and shock arrival times during the interval from 2013
through late 2017. These are summarized in Table 1. The models are summa-
rized elsewhere (https://swrc.gsfc.nasa. gov/main/cmemodels/), which also
provides a list of peer-reviewed papers describing the techniques. Here we
illustrate a few of the approaches, focusing on the models that have made
the most number of predictions, as well as those that can be conveniently
compartmentalized into a particular category.

In the broadest terms, the models can be classified as CME-shock arrival fore-
casts or CME arrival forecasts. In the former category, the shock time of arrival
(STOA; Dryer et al., 2004) and WSA-ENLIL+Cone (WEC) Model (Odstrcil et al.,
2004) are two prominent examples. In the latter category, the WEC Model
also plays a major role, while the DBM (Vršnak et al., 2013) serves to illustrate
a complementary approach to the problem.

The STOA model is undoubtedly the longest running shock forecast model
and, arguably, the simplest to implement. It assumes that a shock, gen-
erated from the eruption of a CME (which is observed in white light) has
a speed profile that is initially constant, after which it decays as a blast
wave, with Vs ∼ R−1∕2. To address the fact that the shock is propagating
through an inhomogeneous medium, the speed of the solar wind at 1 AU
at the time of the flare is used to scale the evolution of the shock wave.
This is a crude attempt to incorporate the ambient solar wind conditions,
but does not account for stream interaction regions, and other structures
that the shock may encounter on its journey from the Sun to 1 AU. The
main inputs to the model are (1) the flare’s solar longitude; (2) the start
time of the metric radio type II radio drift, the duration of the GOES X-ray
trace (which acts as a proxy for the duration of the piston-driving por-
tion of the velocity profile); and (3) the solar wind speed at 1 AU at the
time of the flare. The model outputs the shock arrival time, among other
derivative parameters.

The WEC Model, including its many implementations (e.g., NOAA,
GSFC/CCMC, and UK Met Office), is the current standard model for predict-
ing the large-scale plasma properties of the ejecta as it propagates from
∼ 20RS to 1 AU. It is also representative of some of the other advanced
MHD-based models that are currently being, or proposed to be, used for

CME forecasts (e.g., CORHEL, SWMF, EUHFORIA, SUSANOO, and ZEUS-3D), and thus serves to illustrate sev-
eral general points. Moreover, it is the only operational space weather model implemented by NOAA in the
United States. The forecasts analyzed here were originally produced by NOAA forecasters working at the
Space Weather Prediction Center (SWPC) in Boulder, CO. The model is initialized by parameters derived from
a cone model fit to white-light images as the CME is observed to pass through the solar corona. Specifically,
the initial speed, density, location, and propagation direction of the plasma ejecta are all derived from
these observations and serve as boundary conditions for the heliospheric model, ENLIL. ENLIL, itself, is first
populated with ambient solar wind flow using the empirically based WSA model. It is worth noting that
WEC Model purposefully makes some simplifications to the process that provide tractability for forecasting
purposes (Pizzo et al., 2011). More sophisticated models of the ambient solar wind now include thermody-
namics, and even wave/turbulent heating. Additionally, more advanced CME models include the eruption
process, which provides a self-consistent flux rope embedded in the CME. ENLIL, on the other hand, provides

RILEY ET AL. 1247

https://swrc.gsfc.nasa. gov/main/cmemodels/


Space Weather 10.1029/2018SW001962

only ambient spiral fields within its ejecta. Nevertheless, for the purposes of forecasting the arrival of the
CME and its shock, these are defensible simplifications.

Given the several variants of the WEC models in the scoreboard, it is worth commenting on some of the distinc-
tions. The UK’s Met Office WEC model entry, produced by the Met Office Space Weather Operations Centre, for
example, is based on a human-in-the-loop interpretation of ENLIL output, not the raw (or automated) output.
The forecaster uses the WSA-ENLIL result as one factor in their CME arrival time prediction, manually adjusting
this prediction based on their experience and any other observations. For example, if the comparison between
ENLIL and in situ measurements at 1 AU suggests that the ENLIL background solar wind speed is lower than
in reality, forecasters may nudge the forecast to have the CME arriving at Earth earlier than the raw ENLIL out-
put would have suggested. Additionally, it is worth noting that the Met Office forecasts non-Earth directed
events, incorporating the probability column in the scoreboard to reflect their confidence that it might result
in a glancing collision with Earth.

The DBM lies between the STOA and WEC models in terms of complexity. It relies on the assumption that
the dynamics of ICMEs can be interpreted by the MHD drag: ICMEs that are faster than the ambient flow
are decelerated, whereas those traveling slower than the ambient wind are accelerated. Vršnak et al. (2013)
derived a set of expressions that allow the equation of motion to be solved analytically, producing, in part, the
time of arrival of the CME. Assumptions must be made for several free parameters in the model, which are, in
turn, based on reasonable, but average properties of CMEs near the Sun. The model relies on several important
assumptions, including one that requires the mass of the ICME to remain constant. Additionally, it does not
take into account the structure of the ambient solar wind into which it propagates. The primary inputs for
the model are (1) CME speed at 20RS; (2) the drag parameter, 𝛾 ; and (3) solar wind speed, vsw . The parameter
𝛾 is estimated by considering the relative density of the ejecta to the surrounding corona, as well as its radial
thickness. Its value, however, is not well constrained, and a heuristic rule given is that 𝛾 = 10−8/km for bright
CMEs and 𝛾 = 2 × 10−7/km for dim events (as inferred from coronagraph images), where a default value of
𝛾 = 0.2 × 10−7∕km in combination with vSW = 450 km/ s can be applied to a broad range of different CMEs. In
addition, the DBM-ENLIL comparison indicated that although the DBM describes CME-ejecta propagation, it
could also be applied as a proxy of the CME-shock propagation using lower values of the drag parameter, for
example, 𝛾 = 0.1×10−7∕km. Vršnak et al. (2014) compared real-time ENLIL forecasts until 2014 with hindsight
runs of the DBM showing that both models performed similarly, with SDs of the predicted versus observed
arrival times of about 14 hr.

To varying degrees, the remaining models in the CME scoreboard forecasts can be considered variants of these
models, at least in terms of their attempt to identify some subset of solar observations that are used to drive
a model, resulting in a prediction of the CME/shock arrival time at Earth. One model worth remarking on is
the so-called average of all methods. This is an unweighted average of all the forecast submissions. As such, it
represents a real-time ensemble prediction.

All the teams that submitted forecasts to the CCMC are summarized in Table 1. The number of forecasts
produced by each group ranged from 1 to 114. Because different models were applied at different times,
this resulted in a total of 139 possible forecasts, which explains why the average of all methods entry has
this number of forecasts. In the analysis that follows, we include the results from all of the models when
we consider the statistics across all the models. However, for the purposes of investigating the properties
of the forecasts in more detail, such as their variability from year to year, we restrict the analysis to the six
most-frequently submitted models (average of all methods, WEC (GSFC SWRC), SIDC, WEC (NOAA/SWPC), WEC
(Met Office), and Ensemble WEC (GSFC SWRC)). We note that the results from the last model were not neces-
sarily the official forecast. In some cases, results were inadvertently posted online from a preliminary, and not
final forecast.

2.2. Data
Data were obtained from the CCMC’s CME scoreboard website (https://kauai.ccmc.gsfc.nasa.gov/CMEscore-
board). These pages allow registered users to submit forecasts of CME-shock arrival times in real time, compare
with other submissions, and once the event has arrived at 1 AU, compare with the observed arrival time. The
site takes as input (1) predicted arrival time; (2) confidence in prediction; (3) date and time of submission; and
(4) predicted geomagnetic storm parameters. The confidence in prediction parameter is a heuristic probabil-
ity that the CME will actually be measured at 1 AU, with 0% indicating that the ICME will definitely not be
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Figure 1. Time series of all forecasts in the Community Coordinated Modeling Center Coronal Mass Ejection scoreboard
data base. Each circle has been color-coded according to the model that produced that prediction.
WEC = WSA-ENLIL+Cone; SWPC = Space Weather Prediction Center; DBM = drag-based model; STOA = shock time of
arrival; EAM = Effective Acceleration Model.

observed and 100% indicating that it will certainly be observed. This may be of value in cases where the ICME
trajectory with respect to Earth is anticipated to be glancing. From these, the website routines also add (1)
the actual shock arrival time and (2) the difference between the predicted and observed timing. Prediction of
both CME-shock arrival time and geomagnetic parameter (Kp or Dst) is not required.

Figure 2. Histogram of Δt forecasts for six most-frequently submitted models. Values shown outside the x axis range
summarize outliers, in this case, < −60 or >60 hr. WEC refers to the WSA-ENLIL + Cone model.
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Table 2
Summary of the Statistics for Δt for the Six Most-Frequently Submitted Models

Model Min. First Qu. Median Mean MAE1 Third Qu. Max. SD

Average of all methods −60.3 −11.7 −3.07 −3.67 12.9 4.82 42.8 17.1

WEC2 (GSFC SWRC) −48 −15.8 −5.9 −4.89 14.5 5.65 41.2 18

SIDC −56.9 −10.2 −0.58 −0.129 13.6 11.2 48.9 18.5

WEC (NOAA/SWPC) −39.2 −11.9 −1.07 −1.27 13.1 11 23.5 15.5

WEC (Met Office) −66.9 −12.6 1.5 0.237 17.3 9.14 69.5 23.8

Ensemble WEC (GSFC SWRC) −64.8 −17 −5.37 −7.12 13.8 4.48 24.4 17

Note. All times are in hours. MAE = Mean Absolute Error; WEC = WSA-ENLIL + Cone model.

The data are presented in HTML tables, with each year given on a separate web page. We wrote a java-based
scraping routine to pull all the data from the current year page as well as the previous years (back through
2013), combine into a single structure, and write out a CSV data file. This is provided in the supplemental
information through a GitHub repository, and can be run at any point in the future to create an updated
version of the data set.

3. Results

As of 11 May 2018, there were 724 forecasts in the CME scoreboard forecast data base. These were distributed
among the models as shown in Table 1. In Figure 1, we show Δt as a function of time for all forecasts. The
points have been color-coded according the model making that particular prediction.

Figure 1 summarizes all model predictions during the entire 6-year period over which the CME scoreboard
has been run. Each model has been given a unique color to highlight any biases in prediction, as well as
to indicate during which portion of the interval the model forecasts were being submitted. We note several
points. First, at least qualitatively, there do not appear to be any obviously better models (as would be indi-
cated by traces at, or near, Δt = 0, although this is difficult to robustly assess from this display). Second,
although there are no gross trends in the envelope (suggestive of a net improvement or worsening of the
models), we note a tendency for forecasts around 2014 to be displaced below the zero-line, while no shift is
apparent from mid-2016 onward. Third, the number of forecasts appears to remain roughly constant during
the interval.

In Figure 2 we summarize the distribution of Δt for the six most-frequently submitted models (i.e., where
the ranking is based on the number of predictions, not necessarily the accuracy of the prediction). In each
panel’s title, the name of the model is given as well as the SD in the prediction. The accuracy of the model is
given by how far away from the true value the mean or median values lie. In these cases, the different models
are reasonably clustered around zero. In contrast to accuracy, precision refers to the spread in the estimates
(about the calculated average). Here, at least qualitatively, we see that the forecasts show similar degrees of
spread. Table 2 provides more quantitative estimates of these quantities. Of note is that the SIDC forecasts are
the only ones with mean and median errors that are less than 1 hr. The SD, or spread in the distributions of
five of the models, is within 18.5 hr, with only the Met Office model having a slightly larger SD. In what follows,
we define model accuracy by < Δt > and precision by SD.

Table 3 summarizes the main statistics for Δt for all 32 models submitted to the CME scoreboard. We note the
following main points. First, only one model (SIDC) had median and mean errors of less than 1 hr. Addition-
ally, the team responsible submitted 101 forecasts, allowing us to conclude that this small offset are probably
robust. Second, five models provided forecasts with mean and/or median offsets that were approximately
19 hr or more: STOA, ESA, COMESEP, Expansion Speed Prediction Model, and Rice-ENLIL Dst. Of these, four of
them were associated with negativeΔt’s, suggesting a strong bias to forecast a later arrival time than was actu-
ally observed. Third, in most cases, the mean and median values were not significantly different, suggesting
that the distribution of errors was relatively symmetric. In some cases, however, the first and third quantiles
were quite different; however, this was probably due to low-number statistics for a particular model, more
than any intrinsic asymmetric distribution in the errors. Fourth, the MAE, although showing significant varia-
tion between the models, is typically ∼10 hr for models with a reasonably large number of submissions. For
this subset of models, the average of all methods model slightly outperformed all others.
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Figure 3. Histogram of Δt forecasts for the overlapping 28 Coronal Mass Ejections of the six most-frequently submitted
models. WEC = WSA-ENLIL+Cone.

These data, however, do not account for any possible biases in the selection of which events the forecasters
choose to forecast. Some approaches, for example, may be suited to predictions of certain types of events, or
teams may have only participated in the scoreboard during particular intervals. Thus, restricting our analysis
to only those events that were forecasted by all models would be more instructive in assessing the intrinsic
skills of the modelers and not any inherent predictability of the subset of ICMEs considered by each team.
Since many models only provided a handful of forecasts, we limited this comparison to the six models that

Figure 4. Histogram of lead time for all forecasted CMEs for six most-frequently submitted models.
WEC = WSA-ENLIL+Cone.
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Figure 5. Histogram of lead times for overlapping 28 Coronal Mass Ejections for six most-frequently submitted models.
WEC = WSA-ENLIL+Cone.

submitted the most forecasts. From these, we identified 28 events that were forecasted by all six. Figure 3

summarizes the distribution of Δt for these events. Again, the dashed line provides an estimate of the density

function, providing some measure for how Gaussian-like these distributions may be. We note the following

points. First, the values are generally distributed more normally than when all events are considered, with the

average of all methods being most Gaussian. Second, the events are generally more narrowly constrained,

suggesting that this subset of events were more amenable to prediction. Third, the median values are all very

small, with the average of all methods performing best. The SDs were all similar, again with the average of all

methods yielding the lowest value.

The CME scoreboard table also provides the lead time for each forecast, that is, the difference between the

observed arrival time of the CME shock and the time the forecast was submitted to the CCMC. These are

Figure 6. Comparison of lead time versus arrival time error for all Coronal Mass Ejection forecasts. The color-coding is
the same as that in Figure 1.
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Figure 7. Comparison of median lead time versus median arrival time error
for forecast model as a function of time. The size of the bubbles is
proportional to the logarithm of the number of forecasts made by that
model, with a lower threshold size set so that models with only a few
forecasts still remain visible. WEC = WSA-ENLIL+Cone; DBM = drag-based
model; EAM = Effective Acceleration Model; STOA = shock time of arrival.

summarized in Figure 4 for all ICMEs that were forecasted by the previously
defined six models. In this case, no lead time was provided for the aver-
age of all methods since it represents the average of multiple forecasts: We
could have computed the average of all lead times for the submitted fore-
casts, but it could be argued that the lead time should be the smallest of
all values, since the forecast could not be computed until that last predic-
tion was submitted. For the remaining models, the median and spread in
values are approximately the same, with SIDC having the largest SD (due,
at least in part, to one large outlier). The distribution of the Met Office’s
model’s lead times are flatter, with a lower median value than other WEC
approaches. Finally, we note that two submissions from the WEC (GSFC
SWRC) team had negative lead times, corresponding to forecasts that were
made (or at least submitted) after the ICME arrived at 1 AU.

Again, restricting ourselves to the 28 events that were sampled by the
six most-frequently submitted models, the picture changes (Figure 5).
Now the lead times all drop moderately to approximately 40 hr. The
spread also decreases and the distributions look more log-normal-like. For
these events, predictions were consistently made with lead times greater
than 20 hr.

Figure 6 makes a comparison between Δt and Lead time for all forecasts
made during the 6-year period. The data have been color-coded as in
Figure 1. There appears to be a general trend that as the lead time of the

forecast increases, the errors in arrival time are negatively biased. That is, that the models predict an earlier
arrival time than was observed. A similar, but slightly different, interpretation is that for lead times less than
70 hr, there is no obvious bias in arrival time; however, beyond 70 hr, the forecasts are strongly negatively
biased. While this display provides gross trends across all submissions, it is difficult to make any inferences on
the performance of specific models. Although we have not included external data in our analysis of the CME
scoreboard, it could be reasonably inferred that the longer-lead-time events are associated with slower CMEs

Figure 8. Histogram of Δt from NOAA/SWPC forecasts, based on the WSA-ENLIL+Cone Model as a function of year.
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Table 4
Summary of the Statistics for Δt for the NOAA/SWPC Model by Year

Year Min. First Qu. Median Mean MAE Third Qu. Max. SD No. forecasts

2013 −25.2 −8.8 −0.435 −1.47 11.2 10 17.7 13.7 17

2014 −39.2 −18.3 −6.55 −8.53 13.2 3.07 21.2 14.9 26

2015 −17.4 −5.34 8.31 5.22 12.2 15.3 21.4 12.6 23

2016 −19.5 −16.8 −4.25 0.004 16.2 18.6 21.9 19.4 6

2017 −5.13 8.3 17.7 13.4 16 22.8 23.5 13.3 5

2018 −22.6 −22.6 −22.6 −22.6 22.6 −22.6 −22.6 NA 1

Note. All times are in hours. MAE = mean absolute error.

(since they take longer to propagate to Earth), and, thus, the bias in the longer-lead-time events represents
errors introduced in trying to forecast slow CMEs.

Figure 7 addresses this. Again, Δt is plotted against lead time; however, in this case, all forecasts by a specific
team have been averaged and plotted as one point, with the radius of the bubble being proportional (loga-
rithmically) to the number of forecasts made by that team. We note several points. First, the trends observed
in Figure 6 are not as apparent. The WEC-based models are generally associated with longer-lead-time fore-
casts than many of the other models. Second, the teams submitting the most forecasts are all clustered around
Δt ∼ 0, with most of them lying slightly negative. Third, the SIDC, NOAA/SWPC, and Met Office models are
notably the best performers in having the least bias, with SIDC slightly outperforming the other two given (1)
a smaller Δt and (2) longer lead time.

Turning our attention now to possible temporal trends, in Figure 8 we show the distribution of Δt from the
NOAA/SWPC model as a function of time (in years). Similar results were found for SIDC (results not shown).
The statistics inferred from these values are summarized in Table 4. We note the following points. First, there is
a significant variation in the total number of forecasts each year, the first and last years perhaps representing
truncation constraints. The largest number of forecasts were made in 2014 and 2015. Second, there do not
appear to be any obvious asymmetries: Some years show a slightly larger positive tail (e.g., 2016), while other
years show a negative tail (e.g., 2015). Third, the MAE shows no obvious statistical trend moving from 2013 to
2017. Heuristically, at least, the MAE appears to increase as time progresses.

Given the limitations of small-number statistics for analyzing a single model, we can ask whether, as a whole,
the forecasts from all models have improved over the last 6 years. Figure 9 shows the distribution of Δt for
all forecasts as a function of year in the form of a whisker plot. We note the following: (1) The number of
forecasts rose for 3 years, then decreased by a factor of two for the last 2 years; (2) the median values bracket
zero, suggesting that there is no obvious systematic bias in the forecasts; and (3) there is no obvious decrease

Figure 9. Variation in Δt as a function of year for all model predictions. The line in the center of the box gives the
median of the data, while the tops and the bottoms of the box give the lower and upper quartiles. The ends of the
vertical lines give the minimum and maximum values of the data (provided that there are no outliers), while any circles
give the values of outliers (more then 1.5 times above/below the upper/lower quartiles).
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(or increase) in the size of the boxes or maximum values during the almost 6-year period. With respect to
the first point, this likely represents two competing effects: As the CME scoreboard gained in popularity with
modelers, the number of submitted forecasts increased; however, as the Sun has moved ever closer to solar
minimum, the number of opportunities to make forecasts decreased. This can be inferred from the number of
forecasts made by each model (see Table 3), and can also be inferred by the vertical clustering of the points,
which appears to increase, or remain roughly constant moving from 2013 to 2017.

4. Discussion

In this study, we have investigated the accuracy of space weather models in forecasting the arrival time of
CMEs and/or their associated shocks. Taken as a whole, the models can, on average, predict arrival times to
within ±10 hr, however, the precision around this average is large: ±20 hr. These results compare well with
those of Wold et al. (2017), who found a MAE in arrival time of 10.4 ± 0.9 hr for 273 CMEs predicted (and
observed) to arrive at Earth, STEREO A or STEREO B. On average, the best performers can predict the arrival
time to within 1 hr (mean error), with a MAE of 13 hr and a SD in these predictions of < 15 hr. Since the mean
error was generally negative for the six most-frequently submitted models, this suggests a forecasted arrival
time later than observed, and, hence, a systematic bias in the forecasts. The mean error is notably smaller than
the early prediction error of ∼4.0 hr reported by Wold et al. (2017). It is also worth noting that all of these
predictions are made in real time, and were initiated by remote solar observations. Thus, the lead time in the
forecasts is substantial: Typically the time it takes for the CME to travel from 20-30RS to 1 AU. For a fast CME,
traveling at an average speed of 1,000 km/s, this would translate into a lead time of 38 hr.

The average of all methods forecasts generally performed and/or outperformed the other models. As an
unweighted average of all forecast times, it represents a simple super-ensemble approach. Its performance
is somewhat surprising given the large errors from many of the submitted forecasts. However, by relying on
a basic tenant of ensemble modeling—that random errors from different models tend to cancel in the aver-
aging procedure—it is able to achieve excellent forecasts. Its primary limitation lies in the fact that it cannot
be calculated until all submissions have been received. Thus, the effective lead time for the average of all
methods is governed by the date/time of the final submission.

Forecasting the arrival time of CMEs and/or their shocks represents a pragmatic decision. On one hand, it
is an easily defined and intuitive metric, and is relatively straightforward to estimate. On the other hand, it
is not necessarily the crucial piece of information about the event we want to know. For example, if Bz is
forecasted to become strong and southward, and remain so for a prolonged period, the precise timing of this
is of secondary importance (e.g., Kay et al., 2017; Kubicka et al., 2016; Riley et al., 2017; Savani et al., 2015).
Similarly, if you can predict that Bz will remain zero, or only show positive excursions, then the timing of this
matters little. By extension, forecasting vSW , Kp, Dst , and AE, even with poor knowledge of the exact timing,
may be of considerably more value to users of space weather products. In spite of this, predicting time of
arrival also provides a path for incrementally improving space weather models. For example, for one of the
variants of the WEC model to improve substantially, which would likely be in improving the precision of the
forecast, it likely requires some improvement to the CME model used (currently a simple plasma ejection), the
specification of the ambient solar wind (currently based on an empirical relationship), or more sophisticated
treatment of multiple eruptions (which appear to play an important role in the largest CME-driven storms).
Additionally, as shown by Mays et al. (2015), improving the accuracy in the arrival time of an ICME improves
the accuracy of the speed of the CME, which, in turn, improves the prediction of Kp (if solar wind speed is used
to predict Kp).

The arrival time of CME-driven shocks depends on a number of factors that could be used to further refine our
analysis. For example, the speed (initial, average, or final) of the CME likely affects the overall accuracy of the
forecast: Fast and massive CMEs arrive more quickly, and are not decelerated by the background solar wind
as much as slower events. Together these suggest that the uncertainties in arrival time would be lower.

It is notable that the errors in arrival time among the various models were quite similar, both in terms of
the accuracy and precision of the forecasts. The models represent a broad range of techniques and ideas
for inferring the time taken to travel from the solar corona to 1 AU. Alternatively, they represent different
methodologies for deriving the speed profile of the CME as a function of heliocentric distance. Each model is
driven by a different, but usually overlapping set of input data: Flare time, type II radio bursts, or white-light
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images, magnetograms, to name but a few. With each set of input data comes a different set of assumptions
and approximations. In white light, for example, halo CMEs provide a measure of the initial speed of the ejecta,
but, unless multiple views are available, this is a projected speed that, additionally, may reflect more of the
expansion of the CME than its propagation toward the observer (Owens & Cargill, 2004). The profiles of v(r)
either assumed or computed by the model can also have a substantial effect on the arrival time. In principle,
the WEC models offer the most accurate way to estimate this since the global model includes an ambient solar
wind as background, and propagates the ejecta through it. However, while ambient solar wind models can,
and often do, reproduce the bulk features of the solar wind (Riley et al., 2001), for any specific solar rotation,
there can be substantial differences (Jian et al., 2015; Owens et al., 2007; Riley et al., 2012). These differences
can result in significant differences in the arrival time for CMEs. Moreover, in these physics-based models, no
account is made of the magnetic structure within the ejecta. The magnetic forces neglected because of this
approximation can have an important effect on the evolution of the ejecta during its passage to 1 AU.

In this study, we focused on the differences between the predicted and observed arrival times, and thus con-
sidered only events for which a prediction was made and this resulted in an observed shock at 1 AU, that is,
hits. We did not consider (1) false alarms, where a model predicts a shock to arrive at a particular time, but no
shock is subsequently observed; or (2) misses, where a model made no prediction (e.g., because the model
[or modeler] predicted that the shock would miss the Earth) but a transient shock was observed. These are,
obviously, important scenarios to consider from a forecasting perspective, and skill scores could be defined
to capture model capabilities for them (e.g., Wold et al., 2017). The CCMC team are currently developing a
mechanism to track misses (i.e., ICMEs that are measured in situ at 1 AU that no model predicted).

On average, the best model predicted CME-driven shock arrival times to within an hour (mean error). However,
as a metric, this may not be the most appropriate quantity to consider, since positive and negative errors tend
to cancel one another. It is only when the direction of the difference is removed, such as with the MAE (∼15 hr),
or when we consider the spread in these predictions (SD ∼15 hr) that we can appreciate the need to improve
the forecasts. Generally, as scientific understanding is transitioned to operational forecasts, it is typically the
statistical, empirical, or heuristic models that outperform the mechanistic, or physics-based models; at least in
the beginning. Here, however, the best model is also the most complex, incorporating the most sophisticated
numerical techniques and relevant physical processes. Thus, the best opportunities to improve upon these
forecasts probably lie in mitigating any uncertainties and errors within the WEC model, several of which have
been noted above. Here we suggest several other ideas that may improve the forecasts. First, the specification
of the ambient solar wind (the WSA part of the model) relies on a questionable prescription for the solar
wind speed (Riley et al., 2015). If the expansion factor model is replaced by the distance from the coronal hole
boundary prescription, this may result in smaller errors.

Second, the magnetograms used to drive the background solar wind flow are plagued with uncertainty (Riley
et al., 2014). Synoptic maps, that is, maps built up from 27-day observations from Earth, or near-Earth space,
can differ significantly from one solar observatory to another. These can translate into substantial differences
in the predicted solar wind speed at 1 AU (Riley et al., 2010), which, in turn, can significantly modulate the
speed of an ICME as it propagates from the Sun to Earth, and hence, affect its arrival time.

Third, the uncertainties in the specification of the ejecta must be improved (the Cone part of the model). In
Mays et al. (2015), a considerable part of the final arrival-time error was caused by minor variations in the initial
direction and speed of the cone. This is particularly true for the most energetic CMEs, for which a large fraction
of the corona participates in the eruption. Additionally, Heliospheric Imagers (HI), which allow the tracking of
CMEs along the entire Sun-Earth line (e.g., Davis et al., 2009). Möstl et al. (2017), using HI images from STEREO A
and a self-similar expansion (SSEF) method, showed that for a set of 76 Earth impacting CMEs, the mean error
in accuracy was 3 ± 16 hr. For a smaller data set, Wood et al. (2017) estimated the uncertainties in the arrival
time of 28 well-observed ICMEs (identified in the Wind in situ measurements and remote solar observations),
concluding that the SD in arrival time was 11.7 hr, reducing to 6.3 hr by the time the ICME had reached 0.3 AU.
Although these numbers cannot be compared directly with the results of the CCMC CME scoreboard, which
were estimated in real time, the narrowing of the error by almost a factor of two suggests that improvements
in the interpretation and/or fitting of the near-Sun observations can have a significant effect on the precision
of the forecasts. Additionally, it provides support for an operational spacecraft situated at L5, which would
be able to continuously track a CME from the Sun to the vicinity of Earth. By 0.3 AU, the speed of the ejecta
may not change dramatically. Thus, this is likely the optimum location to maximize both the lead time of the

RILEY ET AL. 1257



Space Weather 10.1029/2018SW001962

prediction and its accuracy (Colaninno et al., 2013). Ultimately, HI data contain information about the location
of the CME, which should improve the accuracy of the arrival time of the CME, at the expense of a shorter
lead time, as compared to the models described here, which use initial conditions derived from coronagraph
data only (for future prospects with HI, see also Harrison et al., 2017). Ideally, a combination of HI data with
improved numerical simulations in real time would seem a reasonable avenue for making progression.

A related issue concerns the shape of the CME front and/or shock ahead of it. Kubicka et al. (2016) used the
DBM to constrain the kinematics of a CME that was observed by both coronagraphs and at Venus (0.72 AU).
Since Venus was only ∼ 6∘ away from the Sun-Earth line, it had been anticipated that the estimated arrival
time would be substantially more accurately determined. The error, however, was 6 hr. They suggested that
ICME-ICME interactions could have played a role in modulating the speed of the CME, but it is also likely
that strong, local curvatures in the CME/shock front at least contributed to the error in arrival time. Thus, any
transverse local inhomogeneities in the CME front close to the Sun—which provide the initial conditions for
the modeled ejecta—would be magnified as it evolves during its journey to 1 AU.

It is worth remarking that forecaster error or bias is an underappreciated but potentially significant source of
error in the forecasts. In at least several teams (e.g., SIDC, Met Office, and NOAA/SWPC), the forecaster uses
model predictions as a guidance for a much broader forecast, which takes into account many other contri-
butions, including, but not limited to: the number and quality of available coronal images; the confidence in
the CME fit, the presence of preceding events that might affect the medium into which the ICME is propa-
gating, and the confidence the forecaster has in the WSA map prescribing ambient conditions. Additionally,
the people making the forecasts have likely changed over time. NOAA/SWPC’s predictions, for example, were
originally made by two researchers (D. Biesecker and G. Milward), however, later, they were replaced by oper-
ational forecast personnel. Interestingly, there is no obvious change (for better or worse) coincident with the
replacement of personnel.

In this study, we did not attempt to convolve forecast lead-time with the accuracy of the prediction. However,
the two quantities should be combined to produce a more meaningful metric. Longer lead times, up to the
time when the eruption is first observed, should, generally, be viewed as more valuable than forecasts made
closer to when the CME reaches Earth, since the user community has more time to implement any necessary
mitigation strategies. However, it is not clear how to accomplish this, particularly, as its appeal will be domain
dependent. Ideally, a perfect forecast (i.e., one where Δt = 0) made when the CME (or flare) is first observed,
should receive a perfect skill score (although, in principle, we might build in the possibility that models can
predict CME arrival times prior to eruption). A forecast that predicts a CME arrival time accurately at the time
of arrival, or a model that predicts an event at flare time that does not intercept Earth probably has little to no
merit. But how do we compare forecasts made at flare onset with ±10 hr accuracy with forecasts made as the
event crosses, say, 0.5 AU with ±5 hr accuracy? It is worth noting that for most events, and for most forecasts,
forecasters submitted only one entry. However, in a few cases, double submissions were made by the same
team, with different lead times. Unfortunately, there were not a sufficient number of cases to assess whether
forecasts improved as lead time decreased.

This study has been a first step in assessing forecasts for the arrival times of CMEs at Earth; however, it is by no
means a definitive assessment. We suggest several potentially fruitful avenues for continuing this work, which
would likely involve the collection of data not currently available on the current CME scoreboard table. First,
for purposes of formally ranking the models against each other (which was not a primarily goal for the cur-
rent investigation), statistical tests, such as the Mann-Whitney or Wilcoxon signed rank test, could be used to
compare each pair of models to show that for all the CMEs they both forecasted, one model predicted them
better than the other. Second, as noted above, false alarms or missed forecasts could be included in the anal-
ysis through the construction of contingency tables (e.g., Bloomfield et al., 2012). Third, more sophisticated
metrics for assessing arrival time could be constructed, such as one that combines lead time with arrival time.
Fourth, a valuable investigation could center on separating out automatic forecasts from those that rely on
human-added elements (e.g., Murray et al., 2017).

The limitations of the CCMC CME scoreboard also suggest some areas for improvement. For example, all teams
should publish their official forecasts in a consistent, agreed upon, and usable manner. Following the lead from
terrestrial weather forecasting, official centers, in particular, should agree on what to publish, where to publish
it, and how the assessment of the forecasts should be made (i.e., metrics; Henley & Pope, 2017). Additionally,
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publishing these publicly will provide the research community with crucial benchmarks with which to test
other, novel approaches.

In closing, we note that one or more of the teams submitting infrequent predictions to the CCMC may be capa-
ble of providing considerably more accurate forecasts. A limiting factor for many is the small number of events
to which the model has been applied. As more forecasts are made, by these or other novel models, we may see
new best performers. By using the code included with this report, we hope that the modelers will rigorously
test and compare their results (for both past and future events) in an effort to improve accuracy. Additionally,
we hope that the process of refinement would be simpler as multiple variants of each model (with selected
parameters and/or inputs modified) can be quickly tested and compared with previous iterations.
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